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Abstract
Continuous cardiorespiratory monitoring is crucial for

understanding physiological conditions, particularly res-
piratory and cardiac diseases. Wearable devices offer
an attractive approach for this goal, allowing unobtru-
sive data collection. This study evaluates two ECG-
derived respiration (EDR) algorithms using non-standard
electrocardiogram (ECG) leads from a wearable device,
and as well as bioimpedance signal for extracting breath-
ing information. The performance is compared against
respiratory airflow. 12 healthy volunteers followed a
respiratory protocol involving free and paced breathing
while ECG, bioimpedance and respiratory airflow were
acquired. ECG and bioimpedance were measured using
a wearable device, whereas, airflow was recorded using
a standard system. Strong linear relationships (Pearson
coefficients > 0.90) were observed between EDR signals
and respiratory volume, outperforming bioimpedance. The
R-wave amplitude algorithm exhibited superior accuracy
and lower errors (< 5 %) in respiratory cycle detec-
tion. Continuous monitoring remained unaffected over
two days. The findings contribute to advancing wearable-
based respiratory monitoring techniques for clinical and
research applications.

1. Introduction
Cardiorespiratory monitoring is essential for the assess-

ment of respiratory and cardiac diseases. Particularly,
continuous monitoring of breathing patterns can provide
crucial insights into overall health status [1]. Traditional
methods for cardiorespiratory monitoring often involve
cumbersome and restrictive equipment, limiting their fea-
sibility for continuous monitoring in real-world settings.
To address this issue, the emergence of wearable devices
have revolutionized monitoring approaches, offering the
potential for continuous unobtrusive monitoring.

The ECG-derived respiration (EDR) and the bioimep-
dance signals might allow wearable continuous respiratory
monitoring. The EDR is based on the electrocardiogram
(ECG), which is a physiological signal commonly used
for cardiac monitoring. EDR provide a non-invasive and
convenient method to assess breathing through algorithms
based on the morphological changes that the ECG displays
due to the respiratory modulations. Notably, previous stud-
ies showed that EDR signals provide excellent estimation
of respiratory rate [2–4], making this appealing for con-
tinuous respiratory monitoring. Bioimpedance measures
the electrical impedance of the biological tissues between
the sensing electrodes. Particularly, thoracic bioimpedance
can capture breathing information related to respiratory
volume, allowing the estimation of breathing parameters
[5, 6].

Our study aims to evaluate 2 EDR algorithms as well as
bioimpedance for their performance to estimate respiratory
rates. Two EDR techniques are included, namely, EDR R-
wave amplitude (EDRR) and EDR R-to-S wave amplitude
difference (EDRRS), which are extracted from a nonstan-
dard ECG lead. Through this comprehensive analysis, we
seek to provide insights into the performance and suitabil-
ity of EDR methods and bioimpedance signals to perform
wearable continuous monitoring. The protocol involved
free and paced breathing since these resting conditions are
essential to evaluate their potential in respiratory assess-
ment for clinical and research applications.

2. Material and Methods
2.1. Study protocol and acquisition

The study included 12 healthy volunteers who were re-
cruited from imec, Eindhoven, the Netherlands. The re-
cruitment process was carried out via an email inviting all
workers to participate. The study followed the Declaration
of Helsinki and all subjects signed a consent form prior
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Figure 1: Wearable device used in the study, it was at-
tached to the subjects approximately as depicted above us-
ing a patch that incorporates the electrodes: I+ and I- for
injecting the current and V+ and V- for voltage measure-
ment which were used for ECG as well.

to participation. The study protocol was reviewed and
approved by the ethical committee of imec (IM-NL-SP-
2022-0016). It was also reviewed by the Maxima Medical
Center Eindhoven (N22.054) to verify that the regulations
in the medical research involving human subjects act did
not apply to the study.

The protocol consisted of 6 parts (Fig. 2a) and it was
performed twice in consecutive days. Each part had a du-
ration of 2 minutes during which the volunteers were in-
structed to breathe freely and following 3 different respi-
ratory paces: 6, 12, and 15 breaths per minute, as well as
simulating apneas. During the protocol, physiological sig-
nals were collected: respiratory airflow, ECG and thoracic
bioimpedance.

Respiratory airflow was acquired using a standard acqui-
sition system (MP160, Biopac Systems, Inc., Goleta, CA,
USA) together with a pneumotach transducer (TSD117,
Biopac Systems, Inc.). The transducer was connected to
a differential amplifier (DA100C, Biopac Systems, Inc.)
to analogically amplify the signal 200 times and to low-
pass filter it at cut-off frequency of 300 Hz. The sampling
frequency of respiratory airflow was 2 kHz.

For the acquisition of ECG and thoracic bioimpedance
we used a custom wearable device (Stichting imec the
Netherlands, Eindhoven, the Netherlands). The wearable
device was placed on the volunteers’ chest, as depicted in
Fig. 1. The ECG measurements were continuously ob-
tained using a non-standard single-lead configuration. The
bioimpedance measurement was performed using a tetrap-
olar configuration using a injecting current with amplitude
of 48 µA at 40 kHz. ECG and bioimpendance signals were
sampled at 128 Hz and 64 Hz, respectively.

2.2. EDR signals and preprocessing

First, all the signals were resampled to 128 Hz. After-
wards, the ECG signals were preprocessed by a high-pass
filter to remove the baseline (4th order zero-phase Butter-
worth, fc = 0.5 Hz) [7]. R-peaks were detected using an
algorithm proposed in [8] and subsequently refined by ap-
plying the algorithm described in [2]. Two commonly used

Figure 2: Example of resulting breathing signals during the
protocol described in (a). In (b), the 3 signals are compared
to the respiratory volume for the entire protocol, whereas
(c) displays the comparison for 1-minute segment.

EDR methods were analyzed [4]:
- EDRR: obtained as the R-wave amplitude
- EDRRS : obtained by the amplitude difference between
the R- and S-waves
The EDR signals were resampled to 128 Hz using a cubic
spline interpolation.

Respiratory volume was obtained by performing a trape-
zoidal integration of the respiratory airflow signal.

The EDRs, bioimpedance and volume signals were
band-pass filtered: low-pass filter (4th order zero-phase
Butterworth, fc = 1 Hz) and high-pass filter (4th order
zero-phase Butterworth, fc = 0.1 Hz). After filtering, we
smoothed the signals by applying a moving average filter
of 1-sec window.

2.3. Performance comparison

Respiratory cycle detection: We applied the algorithm
we proposed in [9] for detecting the respiratory cycles in
the preprocessed EDR and bioimpedance signals.

Signal quality index: We applied the signal quality index
proposed in [10] for rejecting bad quality segments. This
index was calculated in 32-second windows with 75 % of
overlapping for each respiratory signal.

Respiratory rate was estimated from the detection of
respiratory cycles using 30-second windows of all the sig-
nals signals including the airflow for reference.

The performance of each EDR method and bioimpedance
was assessed by 3 different measures: correlation, ac-
curacy and errors. The Pearson coefficient was used
to evaluate the linear correlation between the EDR and
bioimpedance signals with the respiratory volume. The ac-
curacy in the detection of respiratory cycles was calculated
by comparing to the reference ones from the airflow sig-
nal. Moreover, we calculated the mean average percentage
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Figure 3: Bland-Altman plots for the estimation of respiratory rate during different parts of the protocol. (a) Using thoracic
bioimpedance, (b) EDR R-wave amplitude, and (c) EDR R-to-S wave amplitude difference.

Table 1: Performance of the methods depending on the day of recording

Pearson correlation % of data used accuracy MAPE (%) RR
DAY: 1 2 1+2 1 2 1+2 1 2 1+2 1 2 1+2
bioimpedance 0.81 0.75 0.78 90.55 92.75 91.65 0.89 0.90 0.89 3.22 6.12 4.70
EDRR 0.91 0.90 0.90 96.34 92.70 94.53 0.94 0.92 0.93 4.24 4.62 4.42
EDRRS 0.91 0.90 0.90 94.86 94.75 94.80 0.91 0.92 0.91 5.98 6.37 6.18
MAPE: mean average percentage error, RR: respiratory rate.

error (MAPE) between the respiratory rate (RR) estima-
tion and the reference estimation as well as Bland-Altman
plots to evaluate the disagreement between the respiratory
rates estimation as well as trends on the differences be-
tween measurements.

3. Results

A total of 12 healthy volunteers initially participated in
the study. However, the data of 2 volunteers were rejected
from the analysis due to an adverse event and a low ECG
quality. The remaining volunteers comprised 6 females
and 4 males. Their age was 35.4 ± 9.3 years, and their
mean body mass index was 21.9 ± 1.7 kg/m2.

The main objective of this study was to assess and com-
pare the performance of two EDR methods, using non-
standard ECG leads, as well as the bioimpedance signals
to detect respiratory cycles and estimate RR. The respira-
tory airflow was used as reference which RR values were,
calculated as median (1st - 3rd quartile), 15.89 (13.63 -
18.13) bpm for the free breathing (QB), 6.20 (6.05 - 6.31)
bpm for the 6 bpm paced breathing part, 12.19 (12.04 -
12.43) bpm for the 12 bpm part and 15.10 (15.04 - 15.33)
bpm for the 15 bpm part.

An example of the preprocessed breathing signals used
in this study is illustrated in Fig. 2 including the 6 protocol
parts. We computed the well-established Pearson correla-

tion coefficient using the signals without considering the
results of the SQI. The coefficients were higher than 0.75
for all 3 signals evaluated in the study. Specifically, the
EDRs exhibited an excellent correlation coefficient of >
0.90.

The evaluation of the EDR signals in terms of accuracy
and errors involved excluding the bad quality segments
identified by the SQI and the parts where the subjects simu-
lated apneas. Note that after excluding data using the SQI,
less than 10 % of the data was removed. The accuracy
of respiratory cycle detection was higher than 0.89, with a
slightly better performance observed for the EDR signals
(Table 1). The MAPE values for the estimation of RR were
all lower than 6.18 %. The EDRRS showed the worst per-
formance compared to EDRR and bioimpedance signals
which had errors below 4.5 %. Furthermore, the perfor-
mance metrics for the EDR signals and bioimpedance were
consistently similar on the 2 consecutive days.

4. Discussion

In this study, two EDR signals, EDRR and EDRRS , as
well as bioimpedance signal obtained from a wearable de-
vice were compared for their performance on the estima-
tion of respiratory rate using respiratory airflow as refer-
ence. The EDRR algorithm demonstrated superior perfor-
mance in terms of respiratory cycle detection accuracy and
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error metrics. Bioimpedance and the EDRRS algorithm
performed slightly worse.

In terms of linear relationship, all evaluated methods
demonstrated moderate to strong correlation to the respi-
ratory volume. The EDR signals exhibited excellent lin-
earity, with coefficients higher than 0.90. However, we ob-
served a lower correlation for bioimpedance (0.78) com-
pared to previous studies [5], potentially due to more seg-
ments being identified as bad quality by the SQI (Table
1). This discrepancy might be attributed to differences
in wearable devices, protocols, and specifically, the area
of measurement. The bioimpedance measurement, as de-
picted in Fig. 1, primarily captured impedance changes
related to the left side, which might have influence in the
correlation results. Despite these limitations, the agree-
ment between signals, as shown in Fig. 2, is excellent.

The accuracy in respiratory cycle detection aligns with
previous studies [9] for the three signals. Thus, the simi-
larities in signal morphology and performance suggest that
this algorithm is suitable for EDR signals.

The EDRR exhibited the lowest error values, remaining
below 5 % for both days of measurements. Our findings
differ from previous studies that found a more robust per-
formance for the EDRRS algorithm [4, 11]. Future inves-
tigations should assess if these differences are due to the
use of non-standard ECG leads, warranting a direct com-
parison. Nevertheless, our error values are slightly higher
than those reported in [4, 12], 4.42 % versus 3.8 % and
2.26 % respectively, probably due to the differences in the
methods used for RR estimation.

Bioimpedance performance was excellent as it was
for the EDRR, in terms of accuracy and errors. The
bioimpedance errors were the lowest during the 1st day,
but using less data due to the SQI rejection. The perfor-
mance of the 3 methods remained consistent regardless of
the measurement day (Table 1). This indicates that contin-
uous monitoring using the wearable device did not affect
the breathing estimation for EDR or bioimpedance.

Overall, this study highlights the potential of EDR sig-
nals for continuous cardiorespiratory monitoring and un-
derscores the importance of non-standard ECG leads in
respiratory assessment. The study confirms that the algo-
rithm proposed for bioimpedance signal is suitable for the
EDR signals, showing similar performance in the 3 signals
under study. The positive results reinforce the utility of
wearable devices for cardiorespiratory monitoring. Future
studies should explore the use of this ECG measurement
for extracting respiratory information in longer recordings.
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